Abstract

Primary fluid recovery from a porous medium is driven by the volumetric expansion of thein situfluid. For production from a petroleum reservoir, primary recovery accounts for more than half of the total amount of recovered hydrocarbon. The primary recovery process is studied here at the pore scale and the macroscopic scale. The pore-scale flow is first analysed using the compressible Navier–Stokes equations and the mathematical theory for low-Mach-number flow developed by Klainerman & Majda (Commun. Pure Appl. Maths, vol. 34 (4), 1981, pp. 481–524; vol. 35 (5), 1982, pp. 629–651). An asymptotic analysis shows that the pore-scale flow is governed by the self-diffusion of the fluid and it exhibits a slip-like mass flow rate, even though the velocity satisfies the no-slip condition on the pore wall. The pore-scale density equation is then upscaled to a macroscopic diffusion equation for the density which possesses a diffusion coefficient proportional to the fluid’s kinematic viscosity. Darcy’s law is shown to be inapplicable to primary fluid recovery and it should be replaced by a new mass flux equation which depends on the porosity but not on the permeability. This is in stark contrast to the classical result and it can have important implications for hydrocarbon recovery as well as other applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.