Abstract
It has already been recognized that looking for a positive definite Lyapunov function such that a high-order linear differential inequality with respect to the Lyapunov function holds along the trajectories of a nonlinear system can be utilized to assess asymptotic stability when the standard Lyapunov approach examining only the first derivative fails. In this context, the main purpose of this paper is, on one hand, to theoretically unveil deeper connections among existing stability conditions especially for linear time-invariant (LTI) systems, and from the other hand to examine the effect of the higher-order time-derivatives approach on the stability results for uncertain polytopic LTI systems in terms of conservativeness. To this end, new linear matrix inequality (LMI) stability conditions are derived by generalizing the concept mentioned above, and through the development, relations among some existing stability conditions are revealed. Examples illustrate the improvement over the quadratic approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.