Abstract
Extended real-valued functions on a real vector space with uniform sublevel sets are important in optimization theory. Weidner studied these functions in [1]. In the present paper, we study the class of these functions, which coincides with the class of Gerstewitz functionals, on cones. These cone are not necessarily embeddable in vector spaces. Almost any Weidner's results are not true on cones without extra conditions. We show that the mentioned conditions are necessary, by nontrivial examples. Specially for element k from the cone $\mathcal{P}$, we define $k$-directional closed subsets of the cone and prove some properties of them. For a subset $A$ of the cone $\mathcal{P}$, we characterize domain of the $\varphi_{A,k}$ (function with uniform sublevel set) and show that this function is $k$-transitive. One of the important conditions for satisfying the results, is that $k$ has the symmetric element in the cone. Also, we prove that, under some conditions, the class of Gerstewitz functionals coincides with the class of $k$-translative functions on $\mathcal{P}$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.