Abstract

Terahertz (THz) spectroscopy has been used over the years to study carrier dynamics in a large variety of semiconductor materials utilized in devices such as photoelectrochemical cells. However, due to low transmission of far-infrared radiation through conductive films, thin layers of material deposited on nonconducting substrates have been investigated rather than inside actual devices. Here, we photolithographically etch fluorine-doped tin oxide (FTO) coatings to produce a pattern analogous to a wire-grid THz polarizer, and measure a nearly 260-fold increase in percent power transmitted at 1 THz through patterned electrodes (15 μm wire width and 20 μm wire period) relative to continuous FTO films. We have employed them as visible and THz-transparent electrodes in dye-sensitized solar cells, thereby enabling us to probe the carrier dynamics of a functioning device under an applied bias and with background illumination using time-resolved THz spectroscopy. We find that the electron injection efficiency an...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.