Abstract
The present study reports the preparation of a cellulose scaffold for tissue engineering directly from cellulose fiber using ionic liquid (IL) by the NaCl leaching method with bovine serum albumin (BSA), which is well known protein utilized for biomedical applications like degradation of polymer, cell attachment and proliferation on scaffold. The 1-n-allyl-3-methylimidazolium chloride (AmimCl) IL was used as a solvent for cellulose. The morphology of the scaffold was studied by scanning electron microscopy (SEM) and the images showed that the pore sizes of the scaffolds were about 200 µm. In addition, the water uptake (WU) and degree of degradation of the cellulose scaffold were measured. Meanwhile, the biocompatibility and bioactivity of the scaffold were determined via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenytetrazolium bromide (MTT) assay and the Live/Dead viability test. The various results demonstrated the ability of the Mesenchymal stem cells (MSC) to attach to the surface of the scaffolds amplified as percentage of BSA increased in cellulose scaffold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.