Abstract

Multicellular mesenchymal stem cell (MSC) spheroids possess enhanced chondrogenesis ability and limited fibrosis, exhibiting advantage toward hyaline-like cartilage regeneration. However, because of the limited cell surfaces in spheroid exposed to DNA/vector, it is difficult to realize efficient gene transfection, most of which highly rely on cell-substrate interaction. Here, we report a poly(l-glutamic acid)-based porous scaffold with tunable inner surfaces that can sequentially realize cell-scaffold attachment and detachment, as well as the followed in situ spheroid formation. The attachment and detachment of cells from scaffold is achieved by the capture and release of fibronectin (Fn) via reversible imine linkage between aromatic aldehyde groups of scaffold and amino groups of Fn. Together with N, N, N-trimethyl chitosan chloride condensing plasmid DNA encoding transforming growth factor-β1 (pDNA-TGF-β1), cell attachment realizes efficient surface-mediated gene transfection. Conversion of scaffold stiffness can affect the adhesion shape of cells. Stiffer scaffold reinforces the adhesion, leading to the amplification of peripheral focal adhesions and the promotion of cell spreading, as well as the promotion of gene transfection efficiency. After cellular detachment from the scaffold via lysine treatment, the subsequent spheroid formation with extensive cell-cell interaction up-regulates the corresponding protein expression with a prolonged term. With the induction effect of the expressed TGF-β1, significantly enhanced chondrogenesis of MSCs in spheroids is achieved at 10 d in vitro. Well-regenerated cartilage at 8 weeks in vivo indicates that the present gene transfection system is a platform that can be potentially applied toward cartilage tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.