Abstract

Chitosan was modified into N-p-carboxy benzyl chitosan (NCBC) by introducing an aromatic ring grafted with carboxylic acid as the proton conducting group. A preparation procedure of highly conductive and stable organic-inorganic nanostructured NCBC-silica-poly(vinyl alcohol) (PVA), proton exchange membrane (PEM) for direct methanol fuel cell (DMFC), by the sol-gel method in aqueous media has been reported. These PEMs were developed by cross-linking and designed to consist of weak proton conducting (-COOH) groups at organic segments and strong proton conducting (-SO3H) groups at inorganic segments to achieve high charge density and stabilities. Cross-linking density and NCBC-silica content in the membrane matrix were systematically optimized to control their nanostructure, thermal, mechanical, and chemical stabilities, as well as proton and fuel transport properties. Developed PEMs were extensively characterized by studying their physicochemical and electrochemical properties under DMFC operating conditions. As these PEMs were well processed as self-supporting film, they showed high stabilities and proton conductivity and low methanol permeability. Moreover, among all synthesized membranes, PCS-3-3 hybrid PEM exhibited quite a high selectivity parameter in comparison to Nafion117 membrane for DMFC applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.