Abstract

Quantitation of environmental pollutants has gained momentum due to its widespread requirement in the fields of clinical research, occupational hygiene, public health, and societal welfare. The use of functionalized fluorescent nanomaterials (FFNMs: e.g., metal nanoparticles, semiconductor quantum dots, carbon dots, nanotubes, and nanocrystals) has opened a new avenue for creating simple, selective, and non-invasive real-time analysis, as they can satisfy the growing demand for rapid and cost-effective quantitation. Here, we discuss novel strategies for the qualitative and quantitative analysis of a variety of organic and inorganic environmental pollutants by detecting changes in photo-physical or optical properties (e.g., fluorescence, absorbance, and color) of FFNMs used as probes. Particularly, we emphasize potential approaches for the synthesis and characterization of FFNMs and their underlying interactions with environmental pollutants. The simplification of design and enhancement of specificity towards target analytes should be pursued further to upgrade their real-world applicability in diverse fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.