Abstract

This study reports the functionalization of ZnO nanorods (NRs) through spike-shaped CuO nanoparticles (NPs) to create a nanosized p–n junction, their structural properties, and the mechanism by which bundles of these NRs are able to sense CO gas. The CuO NPs were deposited on solvothermally grown ZnO NRs by a chemical bath deposition method. The formation of the highly crystalline heterogeneous nanostructure of the ZnO NRs was confirmed by electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The effect of the p–n junction on CO sensing behavior of ZnO NRs was evaluated in dry air. The response of ZnO NRs sensors to CO was enhanced after loading with CuO NPs. The role of catalyst NPs is explained by both a collective- and a local-site approach, in which deposition of catalyst NPs changed the overall band structure and surface chemistry of the ZnO matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.