Abstract

Graphene quantum dots (GQDs) serve as a novel solid-state electron transfer reagent anchored on TiO2 by in situ photo-assisted strategy and greatly enhanced photocatalytic H2 evolution activity in methanol aqueous solution without the noble mental cocatalyst. The excellent photocatalytic activities were ascribed to the GQDs which act as an excellent electron transporters and acceptors, as well as photosensitizer. GQDs not only acted as efficient electron reservoirs and a solid-state electron transfer reagent from the conduction band of TiO2 to GQDs, but also acted as an excellent photosensitizer to sensitize TiO2, in which the photoinduced electrons transfer from excited GQDs to TiO2 to produce H2. In addition, GQDs is nanoscale fragments of graphene which can provide a larger active surface and greatly increase the contact area with the TiO2, which is conducive to rapidly transfer photo-generated electrons due to the large specific area and high carrier mobility of GQDs. Thus, GQDs improved the photocatalytic activity for H2 evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.