Abstract

Field populations of Aphis gossypii (SDR) have evolved high resistance to neonicotinoids, including thiamethoxam and imidacloprid. Synergism bioassays and transcriptomic comparison of the SDR and susceptible (SS) strains revealed that the cytochrome P450s may contribute to the neonicotinoid resistance evolution. The transcripts of some P450s were constitutively overexpressed in the SDR strain, and many genes showed expression plasticity under insecticide exposure. Drosophila that ectopically expressed CYPC6Y9, CYP4CK1, CYP6DB1, and CYP6CZ1 showed greater resistance (>8.0-fold) to thiamethoxam, and Drosophila that expressed CYPC6Y9, CYP6CY22, CYP6CY18, and CYP6D subfamily genes showed greater resistance (>5-fold) to imidacloprid. Five P450 genes that caused thiamethoxam resistance also conferred resistance to α-cypermethrin. Furthermore, the knockdown of CYP4CK1, CYP6CY9, CYP6CY18, CYPC6Y22, CYP6CZ1, and CYP6DB1 dramatically increased the sensitivity of the SDR strain to thiamethoxam or imidacloprid. These results indicate the involvement of multiple P450 genes, rather than one key gene, in neonicotinoid resistance in field populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.