Abstract

Durum wheat (Triticum turgidum L. ssp. durum) is a minor crop grown on about 17 million hectares of land worldwide. Several grain characteristics determine semolina’s high end-use quality, such as grain protein content (GPC) which is directly related to the final products’ nutritional and technological values. GPC improvement could be pursued by considering a candidate gene approach. The glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle represents a bottleneck in the first step of nitrogen assimilation. QTL for GPC have been located on all chromosomes, and several major ones have been reported on 2A and 2B chromosomes, where GS2 and Fd-GOGAT genes have been mapped. A useful and efficient method to validate a putative QTL is the constitution of near-isogenic lines (NILs) by using the marker found to be associated to that QTL. Here, we present the development of two distinct sets of heterogeneous inbred family (HIF)- based NILs segregating for GS2 and Fd-GOGAT genes obtained from heterozygous lines at those loci, as well as their genotypic and phenotypic characterizations. The results allow the validation of the previously identified GPC QTL on 2A and 2B chromosomes, along with the role of these key genes in GPC control.

Highlights

  • Durum wheat (Triticum turgidum var. durum Desf.) represents about 5% of the global wheat production and is mainly grown in three principal areas: the Mediterranean basin, the Northern Plains between USA and Canada, and within the desert areas of South West USA and Northern Mexico, with a global production which exceeded 38 million tons in the last cropping seasons

  • Here we present the development of two distinct set of heterogeneous inbred family (HIF)-based near-isogenic lines (NILs) segregating for GS2 and Fd-GOGAT genes from heterozygous lines at those loci, and their genotypic and phenotypic characterizations, aimed to validate the previously identified grain protein content (GPC) QTL on 2A and 2B chromosomes

  • We report the development of two distinct sets of HIF-based NILs, segregating for GS2 and Fd-GOGAT genes, from heterozygous lines at those loci, previously identified in a durum wheat RIL population, as well as their genotypic and phenotypic characterization

Read more

Summary

Introduction

Durum wheat (Triticum turgidum var. durum Desf.) represents about 5% of the global wheat production and is mainly grown in three principal areas: the Mediterranean basin, the Northern Plains between USA and Canada, and within the desert areas of South West USA and Northern Mexico, with a global production which exceeded 38 million tons in the last cropping seasons. Durum Desf.) represents about 5% of the global wheat production and is mainly grown in three principal areas: the Mediterranean basin, the Northern Plains between USA and Canada, and within the desert areas of South West USA and Northern Mexico, with a global production which exceeded 38 million tons in the last cropping seasons. Several studies have considered GPC and grain-yield components simultaneously assessed on the same population to identify GPC loci without pleiotropic effects and/or not closely linked to gene for low yield-related traits, and interesting results were reported both for 2A [8,9,10,11,12,13] and 2B chromosomes [12,14,15,16,17]. The identification of genetic sources of elevated protein content without negative pleiotropic effects would be useful for improving GPC and GY simultaneously

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.