Abstract

We consider a summation technique which reduces summation of a series to the solution of some linear functional equations. Partial sums of a series satisfy an obvious difference equation. This equation is transformed to the functional equation on the interval [0,1] for the continuous argument. Then this equation is either solved explicitly (to within an arbitrary constant) or an asymptotic expansion of the solution is computed at the origin. The sum of the original series is determined uniquely as a constant needed for the matching of the asymptotic series with partial sums of the original series. The notion of a limit is not involved in this computational technique, which allows summation of divergent series as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.