Abstract

Molecular chaperones are a class of proteins responsible for proper folding of a large number of polypeptides in both prokaryotic and eukaryotic cells. Newly synthesized polypeptides are prone to nonspecific interactions, and many of them make toxic aggregates in absence of chaperones. The eukaryotic chaperonin CCT is a large, multisubunit, cylindrical structure having two identical rings stacked back to back. Each ring is composed of eight different but similar subunits and each subunit has three distinct domains. CCT assists folding of actin, tubulin, and numerous other cellular proteins in an ATP-dependent manner. The catalytic cooperativity of ATP binding/hydrolysis in CCT occurs in a sequential manner different from concerted cooperativity as shown for GroEL. Unlike GroEL, CCT does not have GroES-like cofactor, rather it has a built-in lid structure responsible for closing the central cavity. The CCT complex recognizes its substrates through diverse mechanisms involving hydrophobic or electrostatic interactions. Upstream factors like Hsp70 and Hsp90 also work in a concerted manner to transfer the substrate to CCT. Moreover, prefoldin, phosducin-like proteins, and Bag3 protein interact with CCT and modulate its function for the fine-tuning of protein folding process. Any misregulation of protein folding process leads to the formation of misfolded proteins or toxic aggregates which are linked to multiple pathological disorders.

Highlights

  • The primary amino acid sequence of a protein contains all the information necessary for protein folding and its biological activity [1]

  • Both the prokaryotic and eukaryotic cells possess a family of proteins responsible for binding to nascent polypeptide chains and help them fold into biologically functional three-dimensional structures, they are known as molecular chaperones, and they vary in size and complexity [2,3,4,5,6]

  • Molecular chaperones like Hsp90, Hsp70, Hsp40, and Hsp104 bind to nascent polypeptide chain at hydrophobic regions which are exposed to the crowded environment otherwise buried inside in a completely folded protein [7,8,9,10]

Read more

Summary

Introduction

The primary amino acid sequence of a protein contains all the information necessary for protein folding and its biological activity [1]. In a normal cellular condition, a nascent polypeptide chain faces a crowded environment and there is a good possibility that protein will be misfolded and will form aggregates that make the protein inactive, and in certain cases it becomes toxic for the cell Both the prokaryotic and eukaryotic cells possess a family of proteins responsible for binding to nascent polypeptide chains and help them fold into biologically functional three-dimensional structures, they are known as molecular chaperones, and they vary in size and complexity [2,3,4,5,6]. Crystallographic and other evidence show that many chaperones including prefoldin, trigger factor, hsp, and hsp have clamp-like structures, possibly responsible for the binding of nonnative substrates [11] Another class of Journal of Amino Acids cylindrical-shaped chaperones, known as chaperonins, is found to be conserved in all three domains of life and assist the folding of many cytosolic proteins [12, 13]. We will give brief introduction to group I chaperonin and will discuss group II chaperonin, CCT

Group I Chaperonin
Group II Chaperonin
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.