Abstract

Climate change is shifting community structure and biodiversity on a global scale, in part due to alterations of chemical and thermal energy availability. These changes may impact ecosystem functioning through their influence on functional diversity. We investigate patterns of functional diversity, functional niches, and functional traits in bivalve communities across the energetic gradient of the deep Atlantic Ocean. We use the functional traits feeding type, tiering, and motility level to define the axes of functional space and the unique combinations of these traits as functional niches. We find that increased energy affords new species, added into functional space through niche expansion rather than niche packing. Underlying this pattern are complex dynamics of gains and losses of individual functional niches, with few adapted to the low- and high-energy extremes, and most occurring at intermediate energy. Adaptive qualities of specific traits are evidenced by those functional niches occurring at energetic extremes. Tradeoffs between these traits within the intermediate energy zone underlie an increased coexistence of functional niches, which in turn drives a unimodal pattern of functional niches and expansion of used functional space. This work suggests that energy-limited communities may be especially vulnerable to continued shifts in food availability through the Anthropocene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call