Abstract

Pulmonary drug delivery is a non-invasive and effective route for local or systemic drug administration. Despite several products in the market, the mechanism of drug absorption from the lungs is not well understood. An in vitro model for aerosol deposition and transport across epithelia that uses particle deposition may be a good predictor of and help understand in vivo drug disposition. The objective of this study was to examine the uptake of HFA fluticasone (Flovent HFA) particles at various stages of the Next Generation Impactor (NGI) by human Calu-3 cell line derived from human bronchial respiratory epithelial cell monolayer. Particles were directly deposited on Calu-3 cells incorporated onto stages 3, 5, and 7 of the NGI at the air-liquid interface (ALI). We modified the NGI apparatus to allow particle deposition directly on cells and determined the in vitro deposition characteristics using modified NGI. Particles of different size ranges showed different in vitro epithelial transport rates. This study highlights the need to develop in vitro test systems to determine the deposition of aerosol particles on cell monolayers by simultaneously considering aerodynamic properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.