Abstract

Diverse metabolic behaviors endow microorganisms with various ecological functions, and metabolic activities of microbial species may affect the environmental conditions of their habitats. In this study, genome-guided analysis of Planktothrix spp. first divided these strains into six distinct groups, and comparisons of Planktothrix genomes revealed the inter- and intra-species variation. Prediction of central metabolism showed the functional diversity with regard to uptake of carbon, nitrogen, and sulfur sources. As the carbon-fixing microorganisms, Planktothrix isolates played a critical role in transforming the atmospheric carbon into organic carbon-the waterbodies' pool of available carbon. Diazotrophic lifestyle in certain Planktothrix strains may provide valuable avenues for supporting the equilibrium community. Furthermore, genome mining supported the exploration of biosynthetic gene clusters dedicated to cyanobacterial natural products, mainly including non-ribosomal peptide, polyketide, cyanobactin, and microviridin. Notably, some Planktothrix strains had the potential to non-ribosomally synthesize the microcystin (MC), a potent cyclic heptapeptide toxin, and MC-mediated cycling might strengthen the association between MC-producing and MC-degrading microorganisms. In short, genome-wide study of Planktothrix strains advances our current understanding of their metabolic potential and especially ecological roles in shaping natural environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.