Abstract

Maturation of nuclear pre-mRNAs in nematodes requires both cis- and trans-splicing. Both processing pathways involve analogous two-step phosphotransfer reactions and both are dependent upon the integrity of U6 snRNA. We have developed a functional reconstitution assay to assess the U6 snRNA sequence requirements for cis- and trans-splicing. Branch formation between the splicing substrates and U6 snRNA was observed. The frequency of this event was greatly enhanced when a highly conserved sequence in U6 snRNA was altered by mutation. In cis- and trans-splicing reactions reconstituted with this mutant U6 snRNA the liberated exon of U6 proceeded through the second step of splicing using the appropriate splice acceptor sites. These results demonstrate covalent interactions between a U snRNA required for splicing and a splicing substrate, and they provide evidence for an unexpected degree of catalytic flexibility within the spliceosome.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.