Abstract

We present a statistical framework that jointly models brain shape and functional connectivity which are two complex aspects of the brain that have been classically studied independently. We adopt a Riemannian modeling approach to account for the non-Euclidean geometry of the space of shapes and the space of connectivity that constrains trajectories of covariation to be valid statistical estimates. In order to disentangle genetic sources of variability from those driven by unique environmental factors, we embed a functional random effects model in the Riemannian framework. We apply the proposed model to the Human Connectome Project dataset to explore spontaneous co-variation between brain shape and connectivity in young healthy individuals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.