Abstract
In this study, a hydrogel material based on porcine gelatin and sodium alginate was synthesized for use as a dressing for chronic wound treatment. The hydrogels were covalently cross-linked using polyethylene glycol diglycidyl ether (PEGDE 500), and the interaction between the components was confirmed via FTIR. The properties of the resulting hydrogels were examined, including gel-fraction volume, swelling degree in different media, mechanical properties, pore size, cytotoxicity, and the ability to absorb and release analgesics (lidocaine, novocaine, sodium diclofenac). The hydrogel's resistance to enzymatic action by protease was enhanced both through chemical cross-linking and physical interactions between gelatin and alginate. The absorption capacity of the hydrogels, reaching 90 g per dm2 of the hydrogel dressing, indicates their potential for absorbing wound exudates. It was demonstrated that the antiseptic (chlorhexidine) contained in the structured gelatin-alginate hydrogels can be released into an infected substrate, resulting in a significant inhibition of pathogenic microorganisms (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Aspergillus niger). These results clearly demonstrate that the obtained hydrogel materials can serve as non-traumatic dressings for the treatment of chronic and/or infected wounds.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have