Abstract

AbstractThe fast capacity/voltage fading with a low rate capability has challenged the commercialization of layer‐structured Ni‐rich cathodes in lithium‐ion batteries. In this study, an ultrathin and stable interface of LiNi0.8Mn0.1Co0.1O2 (NCM) is designed via a passivation strategy, dramatically enhancing the capacity retention and operating voltage stability of cathode at a high cut‐off voltage of 4.5 V. The rebuilt interface as a stable path for Li+ transport, would strengthen the cathode–electrolyte interface stability, and restrain the detrimental factors for cathode–electrolyte interfacial reactions, intergranular cracking and irreversible phase transformation from layered to spinel, even salt‐rock phase. The as‐optimized NCM displays a higher cyclability (i.e., 206.6 mA h g−1 at 0.25 C (50 mA g−1) with 92.0% capacity retention over 100 cycles) and a better rate capability (141.0 and 112.6 mA h g−1 at 12.5 and 25 C, respectively) than pristine NCM (205.0 mA h g−1 with 73.0% capacity retention at 0.25 C; 120.9 and 93.1 mA h g−1 at 12.5 and 25 C, respectively).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.