Abstract
Functional MRI (fMRI) on spinal cord-injured rodents at 4 and 8 weeks post injury (PI) is described. The paradigm for fMRI, based on electrical stimulation of rat paws, was automated using an in-house designed microprocessor-based controller that was interfaced to a stimulator. The MR images were spatially normalized to the Paxinos and Watson atlas using publicly available digital images of the cryosections. In normal uninjured animals, the activation was confined to the contralateral somatosensory cortex. In contrast, in injured animals, extensive activation, which included structures such as ipsilateral cortex, thalamus, hippocampus, and the caudate putamen, was observed at 4 and 8 weeks PI. Quantitative cluster analysis was carried out to calculate the volumes and centers of activation in individual brain structures. Based on this analysis, significant increase in activation between 4 and 8 weeks was observed only in the ipsilateral caudate putamen and thalamus. These studies suggest extensive and ongoing brain reorganization in spinal cord-injured animals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.