Abstract

LIM kinases (LIMK), including LIMK1 and LIMK2, are unique LIM-family proteins containing a catalytic (kinase) domain. These kinases phosphorylate an actin-depolymerizing factor, cofilin, involved in the regulation of actin-filament dynamics. An unanswered question is the in vivo function of LIMK and how they contribute to development. When we cloned Xenopus homologues of mammalian LIMK, Xlimk1 and Xlimk2, we found that their mRNA and products were abundantly expressed in oocytes. In addition, we obtained evidence for the functional involvement of Xlimk1/2 during oocyte maturation. The microinjection of Xlimk1/2 mRNA into progesterone-treated oocytes significantly inhibited the appearance of a white maturation spot (WMS), an indicator of entry into meiosis. In oocytes lacking a WMS, the organization and/or migration of the microtubule-derived precursor of the meiotic spindle was predominantly affected. We also found that the ectopic expression of Xlimk1/2 clearly prevented dephosphorylation (activation) of Xenopus cofilin (XAC) during oocyte maturation. Furthermore, co-injection of Xlimk1/2 with the constitutively active type of XAC overcame the inhibitory effects by Xlimk1/2, suggesting that XLIMK-induced abnormality in oocyte maturation was mediated by XAC inactivation. Based on these findings, we propose that XLIMK is a putative regulator of cytoskeletal rearrangements during oocyte maturation, and the interaction between XLIMK activity and microtubule dynamics seems highly likely.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.