Abstract

The eukaryotic cell nucleus consists of functionally specialized subcompartments. These nuclear subcompartments are biomolecular aggregates built of proteins, transcripts, and specific genome loci. The structure and function of each nuclear subcompartment are defined by the composition and dynamic interaction between these 3 components. The spatio-temporal localization of biochemical reactions into membraneless nuclear subcompartments can be achieved through liquid-liquid phase separation. Based on this organizing principle, nuclear subcompartments are droplet-like structures that adopt spherical shapes, flow, and fuse like liquids or gels. In the present review, we bring into the spotlight seminal works elucidating the functional interactions between scaffold proteins, noncoding RNAs, and genomic loci, thereby inducing liquid-liquid phase separation as an organizing principle for 3-dimensional nuclear architecture. We also discuss the implications in different cancer types as well as the potential use of this knowledge to develop novel therapeutic strategies against cancer.-Rubio, K., Dobersch, S., Barreto, G. Functional interactions between scaffold proteins, noncoding RNAs, and genome loci induce liquid-liquid phase separation as organizing principle for 3-dimensional nuclear architecture: implications in cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.