Abstract

We consider a class of second-order partial differential operators A of Hörmander type, which contain as a prototypical example a well-studied operator introduced by Kolmogorov in the ’30s. We analyse some properties of the nonlocal operators driven by the fractional powers of A, and we introduce some interpolation spaces related to them. We also establish sharp pointwise estimates of Harnack type for the semigroup associated with the extension operator. Moreover, we prove both global and localised versions of Poincaré inequalities adapted to the underlying geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.