Abstract

Being the principal elements of secondary cell wall, cellulose and lignin both play a strengthening role in plant structures and stress resistance. However, little research has been done regarding the molecular mechanisms involved in the formation of cellulose and lignin in apple. In this study, in order to better understand the regulatory network in the formation of secondary cell wall, an R2R3 MYB transcriptional factor MdMYB5 was identified and explored. The subcellular localization experiments showed that MdMYB5 could function in the nucleus. Even though lignin and cellulose content, and the expression of their biosynthesis related genes decreased in the <i>MdMYB5</i>-RNAi apple, the ectopic overexpression of <i>MdMYB5</i> promotes lignin and cellulose content in Arabidopsis, which contributes to the dwarf phenotype. At the same time, salt and osmotic stress affect <i>MdMYB5</i>-RNAi apple tissue cultures. Further transcriptional activation assays carried out demonstrated that MdMYB5 could be activated by MdMYB46 and MdSND1. In conclusion, MdMYB5 was required for the normal formation of secondary cell wall in apple and could be activated by the key regulatory factors MdMYB46 and MdSND1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.