Abstract

Oil reservoirs and production facilities are generally contaminated with H2S resulting from the activity of sulphidogenic prokaryotes (SRP). Sulphidogenesis plays a major role in reservoir souring and microbial influenced corrosion in oil production systems. In the present study, sulphidogenic microbial diversity and composition in saline production fluids retrieved from three blocks of corroding high temperature (79 ~ 95 °C) oil reservoirs with high sulfate concentrations were investigated by phylogenetic analyses of gene fragments of the dissimilatory sulfite reductase (dsr). Analysis of dsr gene fragments revealed the presence of several clusters of sulphidogenic prokaryotes that cover the orders Desulfovibrionales (Desulfovibrio, Desulfomicrobium thermophilum), Desulfobacterales (Desulfobacterium, Desulfosarcina, Desulfococcus, Desulfotignum, Desulfobotulus, Desulfobulbus), Syntrophobacterales (Desulfacinum, Thermodesulforhabdus, Desulforhabdus), Clostridiales (Desulfotomaculum) and Archaeoglobales (Archaeoglobus); among which sequences affiliated to members of Desulfomicrobium, Desulfotomaculum and Desulfovibrio appeared to be the most encountered genera within the three blocks. Collectively, phylogenetic and non-metric multidimensional scaling analyses indicated similar but structurally different sulphidogenic prokaryotes communities within the waters retrieved from the three Blocks. This study show the diversity and composition of sulphidogenic prokaryotes that may play a role in the souring mediated corrosion of the oilfield and also provides a fundamental basis for further investigation to control oil reservoir souring and corrosion of pipelines and topside installations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.