Abstract

Metal-oxide-semiconductor field-effect transistors (MOSFETs) with a functional gate, which enables self-adjustment of threshold voltage (Vth), were proposed for ultralow power operation and fabricated with conventional complementary metal-oxide-semiconductor (CMOS) technology. In the on-current state of fabricated nMOSFETs, electron ejection from the charge trap layer by direct tunneling makes Vth low and increases on-current further. In the off-current state, electron injection into the charge trap layer makes Vth high and suppresses subthreshold leakage current. Although the characteristic time of electron transfer of the functional gate from on-current state to off-current state is fairly long, the logic mode operating principle has been verified with the experimental device. Reduction of tunnel oxide thickness (Tox) will reduce the time, which will lead to the practical use of the proposed device for CMOS logic application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.