Abstract

Bacteriophage T4 encodes orthologs of the proteins Rad50 (gp46) and Mre11 (gp47), which form a heterotetrameric complex (MR) that participates in the processing of DNA ends for recombination-dependent DNA repair. Crystal and high-resolution cryo-EM structures of Rad50 have revealed DNA binding sites near the dimer interface of Rad50 opposite of Mre11, and near the base of the coiled-coils that extend out from the globular head domain. An analysis of T4-Rad50 using sequenced-based algorithms to identify DNA binding residues predicts that a conserved region of positively charged residues near the C-terminus, distal to the observed binding sites, interacts with DNA. Mutant proteins were generated to test this prediction and their enzymatic and DNA binding activities were evaluated. Consistent with the predictions, the Rad50 C-terminal mutants had reduced affinity for DNA as measured by Rad50 equilibrium DNA binding assays and an increased Km-DNA as determined in MR complex nuclease assays. Moreover, the allosteric activation of ATP hydrolysis activity due to DNA binding was substantially reduced, suggesting that these residues may be involved in the communication between the DNA and ATP binding sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.