Abstract

Background Type 2 diabetes mellitus (DM) is known to negatively affect biological properties of venous vasculature, and, particularly, to reduce endothelium-derived nitric oxide release. This condition might influence venous graft function following coronary artery bypass surgery (CABG). The aim of this study was to evaluate the functional effects of a NO-releasing aspirin (NORA) on vein grafts (VG) of diabetics and control patients undergoing elective CABG. Methods In 40 consecutive ischemic heart disease patients, the effects of NORA were tested on segments of saphenous vein conduits harvested during elective CABG. Twenty patients had type-2 DM (mean age 69 ± 2), whereas 20 patients had no DM (NDM) and represented the control group (mean age 67 ± 4). Functional responses were tested by exposing VGs to NORA and to standard vasoactive agents in an organ-bath preparation. Histological features of VGs were also assessed by light and electronic microscopy. Results Significant impairment of endothelial-dependent vasodilation (acetylcholine induced) was documented in VGs of DM subjects. NORA induced a significant and comparable vascular relaxation in all venous segments of NDM and DM patients (56 ± 12% of maximal relaxation vs 61 ± 11% in the control group, respectively). Histology showed variable extent of vascular layer and cellular abnormalities in VGs of diabetics (intimal hyperplasia, calcific deposition, endothelial cell degeneration) likely responsible of the endothelial functional impairment, whereas control group VG showed preserved structures. Conclusions This preliminary study confirms the impairment of endothelium-dependent vasodilative property of VGs in DM patients. It also indicates that NORA effectively induces vasodilation of VGs which was effective also in DM patients thereby representing a promising therapy for diabetics undergoing CABG with the use of VGs, although further studies are mandatory to conclusively assess the safety and benefits of this pharmacological agent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.