Abstract

Flexibility in the bilateral coordination of muscle contraction underpins variable locomotor movements or gaits. While the locomotor rhythm is generated by ipsilateral excitatory interneurons, less is known about the commissural excitatory interneurons. Here we examined how the activity of the V0v interneurons - an important commissural neuronal class - varies with the locomotor speed in adult zebrafish. Although V0v interneurons are molecularly homogenous, their activity pattern during locomotion is not uniform. They consist of two distinct types dependent on whether they display rhythmicity or not during locomotion. The rhythmic V0v interneurons were further subdivided into three sub-classes engaged sequentially, first at slow then intermediate and finally fast locomotor speeds. Their order of recruitment is defined by scaling their synaptic current with their input resistance. Thus we uncover, in an adult vertebrate, a novel organizational principle for a key class of commissural interneurons and their recruitment pattern as a function of locomotor speed.

Highlights

  • The precise coordination of movements on the two sides of the body is an essential feature of locomotion in animals with bilateral symmetry (Grillner and Jessell, 2009; Arber, 2012; Moult et al, 2013; Kiehn, 2016)

  • The distribution of the V0v interneurons in the spinal cord of adult zebrafish was examined by crossing the Tg[vglut2:loxP-DsRed-loxP-GFP] with the Tg[dbx1b:Cre] line which results in GFP expression in the excitatory V0v interneurons (Satou et al, 2012, 2013)

  • Functional heterogeneity of commissural excitatory interneurons in adult zebrafish This study reveals that the excitatory commissural V0v interneurons represent a functionally heterogeneous class

Read more

Summary

Introduction

The precise coordination of movements on the two sides of the body is an essential feature of locomotion in animals with bilateral symmetry (Grillner and Jessell, 2009; Arber, 2012; Moult et al, 2013; Kiehn, 2016). The left-right coordination during locomotion can vary in a context-dependent manner to produce alternating, e.g. walking in limbed animals or swimming in fish, or synchronous, e.g. hopping movements in limbed animals. This is largely achieved by regulating the activity of populations of commissural interneurons connecting local interacting circuits on the two sides of the spinal cord (Soffe et al, 1984; Dale, 1985; Buchanan, 1999a, 1999b; Butt and Kiehn, 2003). A detailed birth-date analysis in zebrafish has revealed three different subclasses of excitatory V0v interneurons arising in an order that correlates with their morphology and axonal projections, arguing for a further subdivision of this class of interneurons (Satou et al, 2012)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.