Abstract

In Xenopus, although primary spermatogonium (PG), the largest cell in the testis, is believed to be spermatogonial stem cell by histological observations, functional evidence has never been obtained. In the present study, we first indicated that culture of juvenile testis in a medium supplemented with follicle stimulating hormone resulted in no proliferation of PG. In this culture system, early secondary spermatogonia could undergo mitotic divisions with a concomitant decrease in their size, so that they became distinguishable in size from PG. Because the subcutaneous environment of juveniles permitted aggregates of the dissociated testicular cells to reconstruct the normal testis structure, we next inserted a genetically marked PG isolated from cultured testes into the aggregate and transplanted it subcutaneously. In this system, 73.9% of the aggregates contained a marked PG. When we observed the aggregates 12 weeks after transplantation, most aggregates (70.0%) contained marked PG that had self-renewed. Among these, fully growing aggregates contained many spermatogenic cells at the later developmental stage. These results suggested that isolated PG from the cultured testes had the ability as stem cells, and that purification of the spermatogenic stem cells became reliable in Xenopus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.