Abstract
Background: Repetitive transcranial magnetic stimulation (rTMS) has shown therapeutic effects in neurological patients by inducing neural plasticity. In this pilot study, we analyzed the modifying effects of high-frequency (HF-)rTMS applied to the dorsolateral prefrontal cortex (DLPFC) of patients with mild cognitive impairment (MCI) using an advanced approach of functional connectome analysis based on network control theory (NCT). Methods: Using local-to-global functional parcellation, average and modal controllability (AC/MC) were estimated for DLPFC nodes of prefrontal-lateral control networks (R/LH_Cont_PFCl_3/4) from a resting-state fMRI series acquired at three time points (T0 = baseline, T1 = T0 + 4 weeks, T2 = T1 + 20 weeks) in MCI patients receiving regular daily sessions of 10 Hz HF-rTMS (n = 10, 68.00 ± 8.16 y, 4 males) or sham (n = 10, 63.80 ± 9.95 y, 5 males) stimulation, between T0 and T1. Longitudinal (group) effects on AC/MC were assessed with non-parametric statistics. Spearman correlations (ρ) of AC/MC vs. neuropsychological (RBANS) score %change (at T1, T2 vs. T0) were calculated. Results: AC median was reduced in MCI-rTMS, compared to the control group, for RH_Cont_PFCl_3/4 at T1 and T2 (vs. T0). In MCI-rTMS patients, for RH_Cont_PFCl_3, AC % change at T1 (vs. T0) was negatively correlated with semantic fluency (ρ = -0.7939, p = 0.045) and MC % change at T2 (vs. T0) was positively correlated with story memory (ρ = 0.7416, p = 0.045). Conclusions: HF-rTMS stimulation of DLFC nodes significantly affects the controllability of the functional connectome in MCI patients. Emerging correlations between AC/MC controllability and cognitive performance changes, immediately (T1 vs. T0) and six months (T2 vs. T0) after treatment, suggest NCT could help explain the HF-rTMS impact on prefrontal-lateral control network, monitoring induced neural plasticity effects in MCI patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.