Abstract

Converging evidence suggests that a single sub-anesthetic dose of ketamine can produce strong and rapid antidepressant effects in patients that do not respond to standard treatment. Despite a considerable amount of research investigating ketamine's mechanisms of action, the exact neuronal targets conveying the antidepressant effects have not been identified yet. Preclinical studies suggest that molecular changes induced by ketamine bring forward large-scale network reconfigurations that might relate to ketamine's antidepressant properties. In this prospective two-site study we measured resting state fMRI in 24 depressed patients prior to, and 24 h after a single sub-anesthetic dose of ketamine. We analyzed functional connectivity (FC) at baseline and after ketamine and focused our analysis on baseline FC and FC changes directly linked to symptom reduction in order to identify neuronal targets that predict individual clinical responses to ketamine. Our results show that FC increases after ketamine between right lateral prefrontal cortex (PFC) and subgenual anterior cingulate cortex (sgACC) are positively linked to treatment response. Furthermore, low baseline FC between these regions predicts treatment outcome. We conclude that PFC-sgACC connectivity may represent a promising biomarker with both predictive and explanatory power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.