Abstract

*Type II secretion (T2S) systems of many plant-pathogenic bacteria often secrete cell wall-degrading enzymes into the plant apoplast. *Here, we show that the Xps-T2S system from the plant pathogen Xanthomonas campestris pv vesicatoria (Xcv) promotes disease and contributes to the translocation of effector proteins that are delivered into the plant cell by the type III secretion (T3S) system. *The Xcs-T2S system instead lacks an obvious virulence function. However, individual xcs genes can partially complement mutants in homologous xps genes, indicating that they encode functional components of T2S systems. Enzyme activity assays showed that the Xps system contributes to secretion of proteases and xylanases. We identified the virulence-associated xylanase XynC as a substrate of the Xps system. However, homologs of known T2S substrates from other Xanthomonas spp. are not secreted by the T2S systems from Xcv. Thus, T2S systems from Xanthomonas spp. appear to differ significantly in their substrate specificities. *Transcript analyses revealed that expression of xps genes in Xcv is activated by HrpG and HrpX, key regulators of the T3S system. By contrast, expression of xynC and extracellular protease and xylanase activities are repressed by HrpG and HrpX, suggesting that components and substrates of the Xps system are differentially regulated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.