Abstract

The products of the FIS genes play important regulatory roles in diverse developmental processes, especially in seed formation after fertilization. In this study, a FIS-class gene MhFIE was isolated from apple. It encoded a predicted protein highly similar to polycomb group (PcG) protein FERTILIZATION-INDEPENDENT ENDOSPERM (FIE). MhFIE functioned as an Arabidopsis FIE homologue, as indicated by functional complementation experiment using Arabidopsis fie mutant. In addition, BiFC assay showed that MhFIE protein interacted with AtCLF. Furthermore, transgenic Arabidopsis ectopically expressing MhFIE produced less APETALA3 (AtAP3) and AGAMOUS (AtAG) transcripts than WT control, and therefore exhibited abnormal flower, seed development. These results suggested that polycomb complex including FIE and CLF proteins played an important role in reproductive development by regulating the expression of its downstream genes. In addition, it was found that MhFIE constitutively expressed in various tissues tested. Its expression levels were lower in apomictic apple species than the sexual reproductive species, suggested it was possibly involved into apomixis in apple. Furthermore, the hybrids of tea crabapple generated MhFIE transcripts at different levels. The parthenogenesis capacity was negatively correlated with MhFIE expression level in these hybrids. These results suggested that MhFIE was involved into the regulation of flower development and apomixis in apple.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.