Abstract

Serotonin (5-HT) receptors play key regulatory roles in nematodes and alternatively spliced 5-HT2 receptor isoforms have been identified in the parasitic nematode, Ascaris suum. 5-HT2As1 and 5-HT2As2 contain different C-termini, and 5-HT2As1Delta4 lacks 42 amino acids at the C-terminus of the third intracellular loop. 5-HT2As1 and 5-HT2As2 exhibited identical pharmacological profiles when stably expressed in human embryonic kidney (HEK) 293 cells. Both 5-HT2As isoforms had higher affinity for 5-HT than their closely related Caenorhabditis elegans homolog (5-HT2Ce). This increased 5-HT affinity was not related to the substitution in 5-HT2As1 of F120 for Y in the highly conserved DRY motif found in the second intracellular loop of other 5-HT receptors, since a 5-HT2As1F120Y mutant actually exhibited increased 5-HT affinity compared with that of 5-HT2As1. As predicted, cells expressing either 5-HT2As1 or 5-HT2As2 exhibited a 5-HT-dependent increase in phosphatidylinositol (PI) turnover. In contrast, although 5-HT2As1Delta4 displayed a 10-fold higher affinity for 5-HT and 5-HT agonists than either 5-HT2As1 or 5-HT2As2, 5-HT2As1Delta4 did not couple to either PI turnover or adenyl cyclase activity. Based on RT-PCR, 5-HT2As1 and 5-HT2As2 were more highly expressed in pharynx and body wall muscle and 5-HT2As1Delta4 in nerve cord/hypodermis. This is the first report of different alternatively spliced 5-HT2 receptor isoforms from any system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.