Abstract

Although multiple adenosine receptors have been identified, the subtype and underlying mechanisms involved in the relaxation response to adenosine in the urinary bladder remain unclear. The present study investigates changes in the membrane potential, as assessed by fluorescence-based techniques, of bladder smooth muscle cells by adenosine receptor agonists acting via ATP-sensitive potassium (K(ATP)) channels. Membrane hyperpolarization evoked by adenosine and various adenosine receptor subtype-selective agonists was attenuated or reversed by the K(ATP) channel blocker glyburide. Comparison of adenosine receptor agonist potencies eliciting membrane potential effects showed a rank order of potency 5'-N-ethyl-carboxamido adenosine (NECA; -log EC50 = 7.97) approximately 2-p-(2-carboxethyl)phenethyl-amino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS-21680; 7.65) > 2-chloro adenosine (5.90) approximately 2-chloro-N6-cyclopentyladenosine (CCPA; 5.51) approximately N6-cyclopentyladenosine approximately N6-(R)-phenylisopropyladenosine > 2-chloro- N6-(3-iodobenzyl)-adenosine-5'-N-methyl-carboxamide (2Cl-IBMECA; 4.78). Membrane potential responses were mimicked by forskolin, a known activator of adenylate cyclase, and papaverine, a phosphodiesterase inhibitor. The A(2A)-selective antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-yl-amino] ethyl)phenol (ZM-241385), and the adenylate cyclase inhibitor N-(cis-2-phenyl-cyclopentyl) azacyclotridecan-2-imine-hydrochloride (MDL-12330A) inhibited the observed change in membrane potential evoked by adenosine and adenosine-receptor agonists. The rank order potency for relaxation of K+-stimulated guinea pig bladder strips, NECA (-log EC50 = 6.41) approximately CGS-21680 (6.38) > 2-chloro adenosine (5.90) >> CCPA approximately 2Cl-IBMECA (>4.0) was comparable to that obtained from membrane potential measurements. Collectively, these studies demonstrate that adenosine-evoked membrane hyperpolarization and relaxation of bladder smooth muscle is mediated by A(2A) receptor-mediated activation of K(ATP) channels via adenylate cyclase and elevation of cAMP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.