Abstract

Brf is the TFIIB-related component of Saccharomyces cerevisiae RNA polymerase III transcription initiation factor IIIB (TFIIIB). An extensive set of Brf fragments has been examined for the abilities to assemble the TFIIIB-DNA complex and recruit RNA polymerase III to accurately initiate transcription. The principal TFIIIB-assembly function of Brf was found to be contributed by a C-proximal segment spanning amino acids 435 to 545, while the principal transcription-directing function was contributed by a segment of its N-proximal, TFIIB-homologous half. The diverse activities of Brf were also reconstituted from combined fragments. The fragments spanning amino acids 1 to 282 and 284 to 596 were found to assemble into TFIIIB-DNA and TFIIIC-TFIIIB-DNA complexes that were very stable, transcriptionally highly active, and indistinguishable (by in vitro footprinting) from complexes formed with intact Brf. The proximities of the individual halves of split Brf to DNA were extensively mapped by photochemical cross-linking of the TFIIIB-DNA complex. We also identified sites of interaction of Brf fragments with TATA-binding protein (TBP), taking advantage of a recently completed mutational analysis of the TBP surface. The constraints established by these analyses specify a global model of the functional segments of Brf and how they fit into the structure of the TFIIIB-DNA complex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.