Abstract
The human fungal pathogen Candida albicans colonizes and invades a wide range of host tissues. Adherence to host constituents plays an important role in this process. Two members of the C. albicans Als protein family (Als1p and Als5p) have been found to mediate adherence; however, the functions of other members of this family are unknown. In this study, members of the ALS gene family were cloned and expressed in Saccharomyces cerevisiae to characterize their individual functions. Distinct Als proteins conferred distinct adherence profiles to diverse host substrates. Using chimeric Als5p-Als6p constructs, the regions mediating substrate-specific adherence were localized to the N-terminal domains in Als proteins. Interestingly, a subset of Als proteins also mediated endothelial cell invasion, a previously unknown function of this family. Consistent with these results, homology modeling revealed that Als members contain anti-parallel beta-sheet motifs interposed by extended regions, homologous to adhesins or invasins of the immunoglobulin superfamily. This finding was confirmed using circular dichroism and Fourier transform infrared spectrometric analysis of the N-terminal domain of Als1p. Specific regions of amino acid hypervariability were found among the N-terminal domains of Als proteins, and energy-based models predicted similarities and differences in the N-terminal domains that probably govern the diverse function of Als family members. Collectively, these results indicate that the structural and functional diversity within the Als family provides C. albicans with an array of cell wall proteins capable of recognizing and interacting with a wide range of host constituents during infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.