Abstract
Lactoferrin (Lf) has been involved in diverse type of cellular activities and its biochemical properties are species specific. Lf is a bilobal molecule in which each lobe binds with one Fe2+/Fe3+ ion. A lot of physiological effects of Lf are regulated by its iron binding and release properties; however these properties are species-specific. To understand the iron-binding, thermal stability and cytotoxic effect of buffalo Lf (buLf) and contribution of individual N- and C-terminal lobes therein, buLf and the truncated monoferric lobes were expressed in Kluyveromyces lactis or Pichia pastoris yeast expression systems. The iron-uptake/release behavior and thermal stability of recombinant buLf was observed similar to the Lf purified from buffalo milk. Supplementation of recombinant buLf to the buffalo mammary epithelial cells (BuMEC) culture decreased their proliferation and the cell viability in a dose dependent manner. The cell growth decreased by 37% at 1.0mg/ml Lf. C-lobe decreased the viability of BuMEC by 15% at 1mg/ml. The C-lobe showed greater cytotoxic effect against BuMEC in comparison to N-lobe. buLf caused a reduced expression of the casein in BuMEC. At 1.0mg/ml of buLf, CSN2 transcript level was reduced by 74% and 78% in the normal and hormone free media, respectively. The expression of IL-1β gene in BuMEC increased by 4-5 fold in the presence of 1.0mg/ml of Lf. The effect was similar to that observed in the involutory mammary gland, suggesting the role of elevated level of Lf in remodeling of buffalo mammary tissue during involution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.