Abstract

Sodium-glucose transporters (SGLT) belong to the solute carrier 5 family, which is characterized by sodium dependent transport of sugars and other solutes. In contrast, the human SGLT3 (hSGLT3) isoform, encoded by SLC5A4, acts as a glucose sensor that does not transport sugar but induces membrane depolarization by Na+ currents upon ligand binding. Whole-exome sequencing (WES) of several extended pedigrees with high density of attention-deficit/hyperactivity disorder (ADHD) identified a triplet ATG deletion in SLC5A4 leading to a single amino acid loss (ΔM500) in the hSGLT3 protein imperfectly co-segregating with the clinical phenotype of ADHD. Since mutations in homologous domains of hSGLT1 and hSGLT2 were found to affect intestinal and renal function, respectively, we analyzed the functional properties of hSGLT3[wt] and [ΔM500] by voltage clamp and current clamp recordings from cRNA-injected Xenopus laevis oocytes.The cation conductance of hSGLT3[wt] was activated by application of glucose or the specific agonist 1-desoxynojirimycin (DNJ) as revealed by inward currents in the voltage clamp configuration and cell depolarization in the current clamp mode. Almost no currents and changes in membrane potential were observed when glucose or DNJ were applied to hSGLT3[ΔM500]-injected oocytes, demonstrating a loss of function by this amino acid deletion in hSGLT3. To monitor membrane targeting of wt and mutant hSGLT3, fusion constructs with YFP were generated, heterologously expressed in Xenopus laevis oocytes and analyzed for membrane fluorescence by confocal microscopy. In comparison to hSGLT3[wt] the fluorescent signal of mutant [ΔM500] was reduced by 43% indicating that the mutant phenotype might mainly result from inaccurate membrane targeting. As revealed by homology modeling, residue M500 is located in TM11 suggesting that in addition to the core structure (TM1-TM10) of the transporter, the surrounding TMs are equally crucial for transport/sensor function.In conclusion, our findings indicate that the deletion [ΔM500] in hSGLT3 inhibits membrane targeting and thus largely disrupts glucose-induced sodium conductance, which may, in interaction with other ADHD risk-related gene variants, influence the risk for ADHD in deletion carriers.

Highlights

  • Membrane transport of glucose in mammalian cells is mediated either by members of the SLC2 or the SLC5 transporter family

  • Whole-exome sequencing of attention-deficit/hyperactivity disorder (ADHD) patients reveals a mutation in human SGLT3

  • To identify genetic variants that may be related to the ADHD phenotype whole-exome sequencing (WES) was conducted in several multi-generational families of German descent with high density of patients affected with ADHD

Read more

Summary

Introduction

Membrane transport of glucose in mammalian cells is mediated either by members of the SLC2 or the SLC5 transporter family. Members of the SLC5 family (sodium-glucose transporters or symporters; SGLTs) mediate co-transport of D-glucose in expense of the electrochemical sodium gradient across the plasma membrane. The core structure is flanked by a single transmembrane segment on the amino terminal side and three of them at the carboxy terminus, named -TM1 and TM11-13, respectively (according to [7]). Within this core structure (TM1–TM10) specific amino acids were identified that are essential either for substrate or sodium binding. Evidence for the importance of several specific amino acids in hSGLTs was deduced from intestinal and renal diseases caused by mutations in these transporters [8, 9, 10]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.