Abstract

Analytical flow cytometry (FCM) is well suited for the analysis of phytoplankton communities in fresh and sea waters. The measurement of light scatter and autofluorescence properties of particles by FCM provides optical fingerprints, which enables different phytoplankton groups to be separated. A submersible version of the CytoSense flow cytometer (the CytoSub) has been designed for in situ autonomous sampling and analysis, making it possible to monitor phytoplankton at a short temporal scale and obtain accurate information about its dynamics. For data analysis, a manual clustering is usually performed a posteriori: data are displayed on histograms and scatterplots, and group discrimination is made by drawing and combining regions (gating). The purpose of this study is to provide greater objectivity in the data analysis by applying a nonmanual and consistent method to automatically discriminate clusters of particles. In other words, we seek for partitioning methods based on the optical fingerprints of each particle. As the CytoSense is able to record the full pulse shape for each variable, it quickly generates a large and complex dataset to analyze. The shape, length, and area of each curve were chosen as descriptors for the analysis. To test the developed method, numerical experiments were performed on simulated curves. Then, the method was applied and validated on phytoplankton cultures data. Promising results have been obtained with a mixture of various species whose optical fingerprints overlapped considerably and could not be accurately separated using manual gating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.