Abstract
The PPP1R3 gene encoding the G-subunit of protein phosphatase-1 has three polymorphisms in linkage disequilibrium in the Pima Indians: an mRNA-destabilizing element in the 3′-untranslated region (ARE1/ARE2 alleles), Arg883Ser, and Asp905Tyr substitutions. The ARE2 allele, Arg883, and Asp905 variants are associated with insulin resistance and higher prevalence of type 2 diabetes in the Pima Indians. The ARE2 allele is associated with lower PPP1R3 transcript and protein levels in muscle tissue. Here we determined the functional contribution of the amino acid substitutions independent of the ARE alleles to insulin-stimulated glycogen synthesis by adenoviral-mediated gene expression in L6 myotubes. Similar overexpression levels of the G-subunit variants increased glycogen synthase fractional activity in the presence (∼1.5-fold) of insulin compared to control myotubes transduced with adenovirus encoding β-galactosidase. The glycogen synthesis rate of myotubes overexpressing the G-subunit variants also increased by ∼1.7-fold over the control with and without insulin. However, these measures were not significantly different among the variants. This study does not support a role for Arg883 and Asp905 variants independent of the ARE2 allele in the impaired insulin-stimulated glycogen synthesis in the muscle of Pima Indians.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.