Abstract

The genetic element 'Mona' has been shown previously to be associated with resistance to demethylation inhibitors (DMIs) in Monilinia fructicola. In this study, the promoter activity of the 'Mona' element was demonstrated genetically and the activity was narrowed down to a 20-bp active region through a series of deletions. 'Mona' knockout transformants (ΔMona) were generated from DMI-resistant isolate Bmpc7, and EC50 values and expression of the MfCYP51 gene were found to be reduced in transformants compared with the parental isolate. When the 'Mona' element was inserted into the upstream region of the MfCYP51 gene of the DMI-sensitive isolate HG3, the EC50 values and expression of the MfCYP51 gene increased in the transformants compared with the parental sensitive isolate. These results indicate that the 'Mona' element determines the DMI fungicide resistance through the up-regulation of the expression of the downstream MfCYP51 gene. No fitness penalty was observed in knockout and insertion transformants, i.e. transformants showed similar mycelial growth rate, sporulation and ability to cause lesions on fruit compared with their parental isolates, suggesting that the 'Mona' element does not affect basal life activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.