Abstract

Two mutant versions of Escherichia coli aspartate transcarbamylase were created by site-specific mutagenesis. Arg-234 of the 240s loop was replaced by serine in order to help deduce the function of the interactions that normally occur between Arg-234 and both Glu-50 and Gln-231 in the R state of the enzyme. The other mutation involved the replacement of Asp-271 by asparagine to further test the functional importance of the Tyr-240-Asp-271 link that has previously been proposed to stabilize the T state of the enzyme [Middleton, S. A., & Kantrowitz, E. R. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 5866-5870]. The Arg-234----Ser holoenzyme exhibits no cooperativity, a 24-fold reduction in maximal velocity, normal affinity for carbamyl phosphate, and substantially reduced affinity for aspartate and N-(phosphonoacetyl)-L-aspartate (PALA). Unlike the wild-type enzyme, the heterotropic effectors ATP and CTP are able to influence the activity of the Arg-234----Ser enzyme at saturating aspartate concentrations. The Arg-234----Ser catalytic subunit exhibits a 33-fold reduction in maximal activity, an aspartate Km of 261 mM, compared to 5.7 mM for the wild-type catalytic subunit, and only a small alteration in the Km for carbamyl phosphate. Together these results provide additional evidence that the interdomain bridging interactions between Glu-50 of the carbamyl phosphate domain and both Arg-167 and Arg-234 of the aspartate domain are necessary for the stabilization of the high-activity-high-affinity configuration of the active site of the enzyme. Furthermore, without the interdomain bridging interactions, the holoenzyme no longer exhibits homotropic cooperativity.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.