Abstract
Aquaculture plays a pivotal role in covering dietary animal protein demands and restocking endangered fish populations. However, high mortality takes place at the earliest life stages: prior and immediately after hatching. Improving growth and health parameters by immunostimulants is widely used in older fish, but rarely studied in larvae. Fulvic acids (FAs) are natural substances found in soil and water. Using zebrafish as a model organism, we evaluated the effects of exposure to a FA at concentrations ranging from 1 to 500 mg C/L (mg dissolved organic carbon per liter) on embryonic development. Furthermore, the concentration of reactive oxygen species (ROS) inside the larvae as well as the molecular mechanisms involved in growth, immune response, and antioxidative protection were determined at 5, 50, and 500 mg C/L. 20 to 200 mg C/L accelerated the hatching, which was mediated by increased expression of ifg-1, gh, and he1-α. Furthermore, lyz and mpx were significantly increased at 5 and 50 mg C/L. A concentration of 500 mg C/L induced genes involved in the protection against ROS (nrf-2, keap-1, cat, sod-1), increased the concentration of ROS inside the larvae and caused tissue damage and mortality. Interestingly, 50 mg C/L activated ROS protection as well (nrf-2, sod-2), while no increase of ROS was found in the larvae. Our results show, that FA at low to medium concentrations can increase the health of larvae, but becomes detrimental at higher concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.