Abstract

In recent times, triboelectric nanogenerators (TENGs) have been extensively studied as green sources for harvesting energy. Paradoxically, TENGs are mostly based on nondegradable synthetic plastics, which are the main source of marine pollution. Here, we explore the possibility of adopting alternative materials like natural wood-based TENGs to reduce marine microplastics. This is the first report on a TENG employing flexible porous wood-based friction layers as both negative and positive materials to enhance triboelectric output. The all-wood-based TENG device demonstrates a very high voltage of 90.1 V and current density of 114.4 nA·cm−2, corresponding to a power of 54.53 mW on a 4.7 × 106 Ω load at 8.2 N. The observed output voltage from the chemically-treated wood-based TENG can be increased to ~20.5 times compared to the delignified wood-based TENG. This work can provide a new mode for bio-degradable TENG systems to solve the escalating plastic waste problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.