Abstract
AbstractStanding Lamb waves in vibrating plates enable haptic interfaces. If the out‐of‐plane displacement of these waves exceeds 1 µm at frequencies above 25 kHz, a silent friction modulation can be created between a human finger and a vibrating plate. A fully transparent friction‐modulation haptic device based on a piezoelectric thin film is demonstrated. The antisymmetric Lamb mode induced at 73 kHz allows for a functional performance that fulfills all conditions for practical use. Out‐of‐plane displacement reaches 2.9 µm when 150 V unipolar voltage is applied. The average transmittance of the whole transducer reaches 75%. The key points of this technology are: 1) a thin HfO2 layer between lead zirconate titanate film and substrate that prevents chemical reaction between them; 2) the efficient integration of transparent indium tin oxide electrodes and solution‐derived piezoelectric lead zirconate titanate thin film onto optical‐grade fused silica; and 3) the use of a transparent insulating layer made of SU‐8 photoresist.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.