Abstract

In order to control the flow inside microchannels, measuring the flow velocity of fluids is an important task. A possible way to determine flow velocity is by measuring the thermal time-of-flight. To this end, in this paper, a full screen printed combination of microheater and thermocouple is presented. Screen printing represents a technology that is attractive for fabricating low-cost sensor systems for microfluidic devices which can be directly integrated into the channel. The structure presented here has been manufactured using high-temperature stable screen printing inks. The thermocouple is calibrated and then the sensor setup is used to determine the flow velocity in a microchannel at various flow rates. The measurement is performed using a frequency domain approach by evaluating phase shifts of slow steady-state oscillations, and alternatively in the time-domain by estimating the heat transfer function from a step response measurement. The measurement results are compared to theoretically predicted values and show good agreement for a flow velocity range from 20 $\mu 1$ /min to 70 $\mu 1$ /min.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.